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I. INTRODUCTION

There is a long tradition of using lattice models of poly-
mers in an attempt to capture the essential features of the
physics of polymers in solution �1–3�. The canonical lattice
model is the self-avoiding walk �SAW� model extended by
including interactions between nearest-neighbor visited sites
on the lattice. These interactions model the quality of the
solvent in which the polymer lies �4,5�. When only one walk
is considered, the model is thought to describe the behavior
of polymers in dilute solution. At high temperature the poly-
mer is “happy” in solution, while at low temperature the
polymer collapses and precipitates from solution. These two
regimes are separated by the � transition �6–8�. In what
follows, we refer to this model as the � model.

In the early 1990s a model was introduced to model the
effects of hydrogen bonding on the formation of secondary
structures resulting from the folding of a protein: the
hydrogen-bonding self-avoiding walk, introduced by Bascle,
Garel, and Orland �9�. In this model the presence of hydro-
gen bonds, essential in real proteins, was modeled by the
presence of interactions between parallel straight sections of
the walk, as shown in Fig. 1. They studied the model in the
Hamiltonian walk limit, where all the sites of the lattice are
visited exactly once. The model was extended first to all
densities �10�and later to allow for solvent effects by includ-
ing all the interactions present in the �-point model, but with
different interaction strengths, depending on the configura-
tion of the walk �again see Fig. 1� �11�.

Exploring the phase diagrams of such frustrated self-
avoiding walk models is not an easy task, in most cases
requiring good quality numerical methods. This is mainly
due to the frustration effects intrinsic to the presence of in-
teractions between portions of the walk which may be arbi-
trarily far apart along the walk. The standard Monte Carlo
methods applied to these models consist in studying finite
walks on the infinite lattice and examining the finite-size
behavior of the walk. The current favorite Monte Carlo
methods are the pruned-enriched Rosenbluth method
�PERM� �12–16�, the flat PERM �17�, and the parallel tem-
pering method �18�. This limits the use of the method to
phase transitions coming from the zero-density high-
temperature phase �self-avoiding walk phase�, but does not
permit the study of phase transitions between different dense
phases. The use of Monte Carlo simulations in such phases is
extremely difficult, normally requiring the relaxation of
some constraints, as is the case for the fluctuating-bond

method �19,20�. This, however, tends to erase the very ef-
fects we wish to study.

Another approach which has proved useful in studying
such models is the use of transfer matrices in which the
partition and correlation functions are expressed in terms of
products of matrices, enabling numerically exact calculations
on infinitely long strips of finite width �10,21�. This method
has two limitations: in practical terms the method is re-
stricted to two dimensions and the number of available
widths is limited. The latter restriction may be alleviated by
using the corner transfer-matrix renormalization-group �CT-
MRG� method, which enables calculations for much larger
lattice sizes �22,23�. These methods enable the investigation
of the phase diagram in the entire phase space.

The hydrogen-bonding self-avoiding walk in a solvent
was recently studied in two dimensions using a combination
of transfer-matrix and CTMRG methods �11�. It has also
been independently studied using a modified Monte Carlo
PERM in two and three dimensions �24�.

All numerical methods are open to possible misinterpre-
tation or artifacts, particularly when applied to models which
include significant frustration effects. It is important to have
some independent confirmation that the results obtained are
reasonable. In this article we propose to provide such an
independent confirmation by performing a mean-field-type
calculation in the form of the Bethe approximation for the
hydrogen-bonding self-avoiding walk in a solvent and com-
pare the results with the previously obtained numerical re-
sults.

In the next section we present the model in detail. In Sec.
IIIwe apply the Bethe approximation to our model, and in

(b)(a)

(c) (d)

FIG. 1. The nearest-neighbor interactions are split into two
classes: those of type �a� where four bonds forming two parallel
lines model the hydrogen bonds, while the others ��b�, �c� and �d��
model the solvent-mediated interactions. Configuration �a� induces
a preferred orientation, while the other configurations do not.
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Sec. IVwe present our results. We finish with discussion and
conclusions in Sec. V.

II. MODEL

The model studied in this article involves the self-
avoiding walk on the square lattice with interactions between
nonconsecutive visited nearest-neighbor sites on the lattice.
In the standard �-point model the nearest-neighbor interac-
tions model effective interactions mediated by the solvent,
given by the difference between the monomer-monomer and
monomer-solvent affinities. These interactions are isotropic.
In the current model, the interactions are split into two sets,
as shown in Fig. 1: those which specify a particular direc-
tion, the hydrogen bonds, and those that do not, which we
shall refer to as the solvent-mediated interactions. Hydrogen
bonds carry an interaction energy −�H, and the others carry
an interaction energy −�. The thermodynamic behavior may
be investigated by introducing the partition function Z from
which many of the relevant thermodynamic quantities may
be calculated. The partition function is given by

Z = �
walks

KN exp���NI� + NH�H�� , �1�

where NI is the number of solvent-mediated interactions and
NH is the number of hydrogen bonds. The fugacity, which
controls the average length of the walk, is denoted by K, and
N is the total length of the walk. For convenience we define
�=� /�H, and without changing the physics of the model, we
may set �H=1; this simply sets the temperature scale. The
partition function then becomes

Z = �
walks

KN exp���NH + NI��� , �2�

from which we may calculate, for example, the free energy
per site, f:

�f = −
1

�
ln Z , �3�

where � is the number of lattice sites. The free energy as
defined here is also the grand potential for the model in
which we concentrate on the walk �rather than the lattice�
and view the problem as grand canonical since the number of
steps in the walk varies. Clearly the basic unit of the calcu-
lation is the lattice site, and so we choose the convention of
referring to f as the free energy per site, which corresponds
to the standard picture in Bethe-approximation calculations.

The fugacity K controls the average length of the walk.
The average number of steps is given by

�N� = K
� ln Z

�K
. �4�

The average length increases as K is increased. For fixed �,
if � is small enough, then the average length diverges con-
tinuously as K approaches some critical value Kc�� ,��. This
defines the self-avoiding walk line, which extends to a �half�
plane as � is varied. If, on the other hand, � is large enough,
then the average length jumps discontinuously at some value

of the fugacity, K=K��� ,��. Together these two regimes de-
fine the plane K��� ,�� on which the walk length first di-
verges. This plane separates the high-temperature, zero-
density, phase from the low-temperature, dense, phases.

III. BETHE APPROXIMATION

In this section we describe briefly the Bethe approxima-
tion. For a good discussion of the Bethe approximation, see
Ref. �25�. The model of interest is studied on the infinite
Bethe lattice chosen to have the correct local geometry. The
lattice chosen for the square lattice is shown in Fig. 2. The
Bethe lattice is a hierarchical lattice built recursively from a
central bond by adding to each extremity k new bonds. To
each dangling bond we add k more bonds, and so on, such
that no loops are formed. Due to the hierarchical nature of
the lattice, it is possible to build up expressions for the par-
tition function recursively. To see this, it is convenient to
consider the lattice as being divided into two branches, left
and right for the example shown in Fig. 2. We may introduce
the partial partition functions W	

l and W	
r for the left- and

right-hand branches, respectively. These partition functions
are conditional upon the state 	 of the central bond. In our
model there are four possible states: �i� empty �state 0�, �ii�
occupied with a link of the walk �state K�, �iii� occupied with
a � interaction �state ��, and �iv� occupied with a hydrogen
bond �state H�.

By symmetry, the left and right branches will have the
same partial partition functions, and so the left-right desig-
nation will be dropped. Each branch may be subdivided into
k subbranches, such that the W	 may be expressed in terms
of the partial partition functions of the subbranches. This
procedure may be continued until the boundary bonds are
reached. In order to do this explicitly, it is convenient to
introduce the notion of the “generation” of a link n, which is
simply the distance of the link from the boundary. As a con-
crete example, consider the calculation of WK

�n�, the partial
partition function conditional on the central bond being oc-
cupied by a link of the walk. We must consider all configu-
rations on the bonds of the generation �n−1�, of which there
are three for the two-dimensional square-lattice example
shown in Fig. 2, which are compatible with the occupied
central bond. Clearly there must be a bond leaving in one of

FIG. 2. The Bethe-lattice representation of the two-dimensional
lattice. The dotted box shows the central bond, exhibiting the de-
sired square-lattice geometry.
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the three directions; the other two bonds may be empty or
occupied by a solvent-mediated interaction. If the bonds on
the central bond and at generation �n−1� line up, then the
“empty” bonds may be occupied by hydrogen interactions.
The weight WK

�n� is simply the sum of the Boltzmann weights
corresponding to all these configurations, multiplied by the
weight for adding the central link. To avoid the divergence of
the partial partition functions it is convenient to introduce
normalized partition functions w	

�n�=W	
�n� /qn �26�with qn cho-

sen such that

�
	

w	
�n� = 1. �5�

This leads to recursion relations for the �normalized� partial
partition functions:

w	
�n� =


	

qn
�
��i	

C	,��i	

i=1

k

w�i

�n−1�, �6�

where ��i	 is the set of state of k links forming generation
n−1, 
	 is the Boltzmann weight of the bond added at gen-
eration n, and the factor C	,��i	

=1 if the choice of the states
��i	 is compatible with the central state 	 and zero otherwise.

It is known that there is no phase transition on the infinite
Bethe lattice, since the number of boundary sites grows too
rapidly. However, the recursion relations may be used in the
center of the lattice as self-consistency equations for the two-
point mean-field theory for the corresponding square lattice.
In this case, we assume we have translational invariance and
drop the generational superscripts. The equilibrium states are
then given by solutions of the following set of recursion
relations:

w0 =
1

q
�w0

3 + �3�w0 + w�� + wH�wK
2 	 , �7�

wK =
K

q
wK�3�w0 + w��2 + 2�w0 + w��wH + wH

2 � , �8�

w� =
�e�� − 1�

q
wK

2 �3�w0 + w�� + wH� , �9�

wH =
�e� − e���

q
wK

2 �w0 + w� + wH� , �10�

q = w0
3 + K�3�w0 + w��2 + �2�w0 + w�� + wH�wH	wK

+ 2e���w0 + w��wK
2 + e��w0 + w� + wH�wK

2 . �11�

The partial partition functions give the contribution to one
branch of the total partition function; the total �normalized�
partition function conditioned upon the state of the central
bond is then given by the product of the weight for the left
and right branches. Each of the partial partition functions
includes the Boltzmann weight corresponding to the state of
the central bond, which is thus counted twice in the full
partition function. This double counting is corrected by di-
viding each term by the relevant Boltzmann weight. Sum-

ming over all the possible states for the central bond gives
the total �normalized� partition function z:

z = �
	

w	
2


	

. �12�

In the usual way, the probability of finding a given bond in
state 	 is given by the partition function conditioned upon
this state divided by the total partition function—i.e.,

p	 =
w	

2

z
	

. �13�

It should be noted that the density  of the walk on the lattice
is simply pK.

The free energy per site may be related to z and q through
the relation

�f =
�k − 1�ln z − 2 ln q

2
; �14�

for a full derivation of this expression, see �26�. For the
square lattice, k=3, and hence �f =ln z−ln q. When multiple
solutions to the recurrence relations exist, the solution with
the lowest free energy is the stable equilibrium solution.

IV. RESULTS

It is instructive to see how the calculation works for the
pure �-point model. Many of the results in this case have
already been presented by Lise, Maritan, and Pelizzola �27�
using a different, variational, approach to the Bethe approxi-
mation. The pure �-point model is defined by �=1, in which
case �H�0 and Eq. �10� is no longer needed. It is conve-
nient to recast relations �7�–�9� by setting

xK =
wK

w0
,

x� =
w�

w0
.

This leads directly to a trivial solution xK=x�=0, corre-
sponding to the zero-density phase. The other possible solu-
tions are given by

x�
3 + �3 − e��x�

2 + �3 − 2e��x� + �e� − 1�� 1

3K
− 1 = 0,

�15�

xK =�3K�1 + x��2 − 1

3�1 + x��
. �16�

For a solution to be physically acceptable, xK and x� must be
positive. Let us first consider the case 1�e��3 /2. While
K�1 /3 all the coefficients of the cubic equation �15� are
positive and there is no physically acceptable solution �one
of the solutions is negative, and the other two are complex
conjugates�. When K=1 /3 there is a solution x�=0 and xK
=0, and when K�1 /3 this solution has a negative free en-
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ergy. This is shown in Fig. 3. This corresponds to the high-
temperature transition, where the transition point corre-
sponds to an infinite self-avoiding walk, defining K���� for
����.

When e�=3 /2 the coefficient of the x� term vanishes, and
when K=1 /3 the zero-density solution becomes a double
root of the cubic equation �15�. This change of behavior is
identified with the � point, and the value ��=ln�3 /2�
=0.405 465. . . agrees with the value given by Lise et al. �27�.
When e��3 /2, a physically acceptable solution now exists
for values of K�1 /3. To find the transition line for e�

�3 /2 we must check for the stability of this new solution;
for small enough K, the free energy is positive, and so the
solution corresponds to a metastable solution, while for some
higher value of K, f becomes negative. The point where f
=0 defines the first-order low-temperature transition, defin-
ing K���� for ����. The free energy in this case is shown
in Fig. 4, and the density as a function of � plotted along the
transition line is shown in Fig. 5.

The tricritical point was identified with a double root of
Eq. �15�. For e��3 /2 there is a line of double roots given by

K =
9�e� − 1�

4e3� . �17�

For ���� this gives the position where a second-order tran-
sition would have occurred had it not been preempted by the
actual first-order transition and as such is identified with the
spinodal line.

We now extend our analysis to ��1. The analysis fol-
lows the same lines as for the pure � model; it is possible to
eliminate all the parameters in terms of x�, though this is
now the solution of a slightly more complicated equation,
which may no longer be expressed in a simple polynomial
form. The � point extends to a line as � is varied. For �
������ there is still a zero-density solution for this equation
when K=1 /3, corresponding to the self-avoiding walk tran-
sition line. The � line is again identified with a double root
of Eq. �15� corresponding to the zero-density phase for K
=1 /3, which occurs when the coefficient of the x� term in a
small-x� expansion of the equation also vanishes. This gives
the ����� through

� =
1

��

ln�27 − 2e��

16
 . �18�

For ��1 there is the possibility of another phase: the crys-
talline phase, where the walk fills the lattice. All the bonds
align with one of the lattice directions, maximizing the num-
ber of hydrogen bonds. This phase has zero entropy �per
lattice site�, and its energy per site corresponds to the energy
for one bond and one interaction. The free energy for this
phase is given by

�fcryst = − �� + ln K� . �19�

Setting K=1 /3 and thus following the self-avoiding walk
line, it is seen that fcryst=0 when �=ln 3. If ������ ln 3, the
first transition met on increasing � is the �-point transition
and the location of the crystallization transition, �H���, is
determined by comparing the free energies of the collapsed
phase and fcryst along the K� line. If ������ ln 3, the walk
collapses directly to the crystalline phase and the � transi-
tion is not present. The changeover between these two cases
occurs at a multicritical point, which is found by setting
����mc�=ln 3. This gives the location of the multicritical
point as Kmc=1 /3,�mc=ln 3�1.098 612 3 and �mc
=ln�21 /16� / ln 3�0.247 524 7. The phase diagram projected
onto the K��� ,�� plane is shown in Fig. 6. When �
��H���, the K� line is given by K=e−�. In the high-density
region of the phase diagram, comparing the free energies of
the collapsed and crystalline phases in the dense region, an-
other phase transition may be seen, already reported in the
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FIG. 3. �f plotted as a function of K for the �-point model
��=1� with �=1.2���. The dashed line shows the metastable
solution.
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FIG. 4. �f plotted as a function of K for the �-point model
��=1� with �=3���. The dashed line shows the metastable
solution.
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FIG. 5. Density  plotted along the K���� line for the �-point
model ��=1�.
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literature �11,24�. Here this phase transition shows up as a
first-order transition, while in more realistic numerical calcu-
lations there is evidence to suggest that it is in fact of second
order �11�. Phase diagrams for two representative cases �
=0.5 and �=0.2 are shown in Figs. 7 and 8.

V. DISCUSSION

While the Bethe approximation is “only” a mean-field-
type calculation, it usually captures the essential features of
the model. For �=1 we obtain results consistent with the
results of Lise et al. �27�. For �=0 the model corresponds to
the pure hydrogen-bonding model. The �K ,�� phase dia-
gram, as already remarked by Buzano and Pretti �29�, corre-
sponds closely to that found with transfer matrices �10�, ex-
cept that the phase transition between the isotropic dense

phase and the crystalline phase is found to be first order here,
while evidence suggests that it is in fact second order
�10,11�. In the model studied here we include the effect of
the solvent, as compared to the hydrogen-type interaction,
and this enters through the parameter �. The solvent-
mediated interactions favor a collapse to an isotropic col-
lapsed phase, while the hydrogen-bonding interaction tends
to align the walk along one of the lattice directions, breaking
the rotational symmetry, leading to a crystalline phase. For �
close to 1, the collapse of an infinite chain is progressive as
� is increased. At the collapse transition the fractal dimen-
sion of the walk is less than the dimension of the lattice. It is
expected that the details of the lattice will not influence the
transition. The collapse transition is, in this case, in the same
universality class as the standard � point. However, once in
the dense phase, the dimensions of the walk and the lattice
are the same. The walk “sees” the lattice. In the plane where
the length of walk first diverges �K=K��� ,��� we see the
appearance of a second transition, from the isotropic phase to
the crystalline phase. This transition line extends into a tran-
sition plane for K�K��� ,��, as shown in Fig. 7. As � is
lowered, a point is reached in which the hydrogen interac-
tions dominate and the walk collapses directly to a dense
crystalline phase. These two regimes are separated by a mul-
ticritical point �mc, where the three transition lines shown in
Fig. 6 meet. The phase transitions found in the context of the
Bethe approximation correspond well to the phase diagrams
found numerically for the same model �11,24�. Krawczyk et
al. �24� found the transition between crystalline and isotropic
dense phases to be first order in three dimensions, while in
two dimensions the order of the transition was less clear, and
the authors conjectured that the transition is critical. This
conjecture is supported by the numerical study of Foster and
Pinettes �11�. Here this transition is found to be first order
due to the mean-field nature Bethe approximation, which
should be exact in d=� dimensions.

The predicted value of �mc�0.248 is close to what is
seen numerically ��mc=0.3→0.5� �11�. Similar phase dia-
grams to those found in Figs. 7 and 8 are found in other
models where frustration effects are important in phase tran-
sitions between different dense phases—in particular, the

0 0.2 0.4 0.6 0.8 1
α
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0.5

1

1.5

2

2.5

β

SAW Phase

Isotropic Phase

Crystaline Phase

FIG. 6. The phase diagram in the �-� plane, with the fugacity
K=K��� ,��. The solid line corresponds to a direct first-order tran-
sition between the self-avoiding walk phase and the crystalline
phase. The dashed line is the line of � points, separating the self-
avoiding walk phase from the isotropic collapsed phase, and the
diamonds correspond to the first-order transition between the iso-
tropic and crystalline collapsed phases. The circle shows the loca-
tion of the multicritical point where the different transition lines
meet.

0 0.5 1 1.5 2
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Crystalline PhaseIsotropic Phase

FIG. 7. The phase diagram in the �-K plane, with �=0.5
��mc. The circle corresponds to the location of the �-point transi-
tion. The transition from the =0 phase to the crystalline phases is
first order, while the transition from the =0 phase and the Isotropic
collapsed phase is second order for ����. The transition between
the two dense phases is first order.
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FIG. 8. The phase diagram in the �-K plane, with �=0.2
��mc. The transition between =0 and the crystalline phase and
the transition between the collapsed phases are first order. The
�-point transition is absent.
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vertex-interacting self-avoiding walk �23,28� �Fig. 8� and the
bond-interacting walk �29,30� �Fig. 7�. However, the nature
of the transition is found to be very sensitive to details of the
interactions. The vertex interacting walk has a phase transi-
tion in the dense phase which is in the Ising universality
class �23,28�, while the hydrogen-bonding model has a tran-
sition which is critical, but not Ising ���0.87� �11�. In the
context of the Bethe approximation, all these transitions
show up as first order. It would be interesting to understand
how to incorporate in a mean-field-type calculation, the es-
sential features of which would reproduce the second-order
nature of the transition between dense phases.

The general features of what is presented here remain true
in three dimensions. The self-avoiding walk line occurs for
K=1 /5 rather than 1/3. This is easily understood: 1 /KSAW
corresponds to the average number of lattice directions avail-
able to the walk at each step. Due to the absence of loops on
the Bethe lattice, this is simply one less than the coordination
number of the lattice—i.e., 2d−1.
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